
COSADE 2010 - First International Workshop on Constructive Side-Channel Analysis and Secure Design

29

Side Channel Leakage Profiling in Software

Daniel Shumow∗and Peter L. Montgomery†

February 1, 2010

Testing cryptographic implementations for side channel leakage is a difficult and im-
portant problem. The techniques used to uncover side channel leakage are more involved
than the usual methodologies of software testing, for example sometimes involving phys-
ical measurements of hardware. As such, it is difficult to work this sort of analysis into
the usual software testing process. To this end we have developed the side channel pro-
filer. This is an extensible framework for capturing dynamic execution of cryptographic
code and applying side channel analysis regardless of underlying architecture. This tool
can be used to selectively emulate different hardware components, or apply other side
channel leakage criteria. We also demonstrate how the tool can be used to analyze an
implementation of näıve square and multiply modular exponentiation.

1 Motivation

There is not unanimous advice on how to comprehensively prevent or test for side chan-
nel leakage from a cryptographic implementation. In [2] and [9], Ferguson et al. and
Molnar et al. advocate code that has no conditional branches or memory accesses. How-
ever, while this criterion appears quite restrictive, it is not comprehensive. For example,
individual instructions may exhibit variable timing or power use ([5] and [6].) There are
also theoretical models for analyzing and proving algorithms secure against side chan-
nel leakage ([8] and [10].) However, even if a programmer implements a cryptosystem
provably secure against side channel leakage, there is a gap between implementation
and theoretical models. Theoretical proofs still leave room for implementation specific
leakage. Emulation has also been used to evaluate side channel leakage on smart cards
([3] and [4].) However, this approach will work only for simple smart card processors.
In general, programmers implementing cryptographic systems are left without compre-
hensive guidance on techniques to prevent side channel leakage, criteria for side channel
security and testing frameworks to validate implementations.

In addition to a lack of comprehensive high level tools and techniques for generally
avoiding side channel attacks, reproducing side channel leakage is difficult. A technique
that software engineers use in debugging is the “repro” or reproduction of the software
bug. However, when the bug is information leakage from a side channel, reproduc-
ing the bug in the purest sense consists of actually mounting a side channel attack.
This may be prohibitively difficult for programmers developing cryptographic software.
As such, these software engineers are deprived of a key technique of debugging their
implementations: reproducing the bug.
∗Microsoft Research, Redmond, USA. Email: danshu@microsoft.com
†Microsoft Research, Redmond, USA. Email: Peter.Montgomery@microsoft.com

1



COSADE 2010 - First International Workshop on Constructive Side-Channel Analysis and Secure Design

30

2 Side Channel Profiler: A Software Solution

We have developed the side channel profiler, a flexible extensible framework for testing
cryptographic implementations against side channel attacks. This provides a method-
ology for evaluating side channel information leakage of cryptographic implementations
that is consistent with other software testing techniques. Furthermore, this tool can be
used by engineers who are not experts in side channel attacks, yet remains useful for
experts. The side channel profiler is a framework including both a development API as
well as a program for evaluating side channel attacks.

The profiler works similarly to an emulator for more advanced processors than smart
cards. However, modern computer processors, even for embedded systems, are too
complex to emulate in the detail needed with any sort of reasonable performance. This
is not to say that in general emulation is too slow. Indeed, recent trends in virtualization,
such as those applied to cloud computing, show that emulation technology can obtain
high performance. The problem for evaluating a piece of software for side channel
leakage is that the goal is not to merely emulate another processor. Rather, the purpose
is to execute a piece of cryptographic software and simultaneously analyze its behavior.
As such, for every instruction executed by the program being evaluated, the side channel
profiler must halt execution and perform an analysis on the state of the processor. To
solve this problem, the side channel profiler does not simulate the entire state of the
processor; rather it selectively simulates or analyzes specific leakage according to an
analysis module.

The side channel profiler operates as follows: The user selects a cryptographic im-
plementation, a program that will exercise this implementation and an analysis module.
The cryptographic implementation is specified by the binary (the crypto module) and
the name of the specific function to evaluate. The program that exercises this imple-
mentation can be any program that causes the specified function to be exercised; this
can be a simple test program or an actual security component that uses the crypto-
graphic implementation. The profiler runs the program and traces the processor state
at the execution of each instruction. This information is fed into an analysis module
that, upon completion of execution, generates a report on side channel leakage.

2.1 Architecture and Implementation

The side channel profiler contains three main architectural components: the core frame-
work, the side channel profiling program and the analysis modules. The core framework
consists of an engine and an API by which this engine is controlled. The engine controls
the execution of the cryptographic implementation and passes this information to the
analysis plugins. The API is used to specify the target cryptographic implementation,
as well as the analysis modules to use as well as other optional information, such as
output files. The side channel profiling program is a simple user interface to the side
channel profiling framework. The analysis modules consist of a set of included plugins,
presently only modules that evaluate control flow or memory accesses. However, these
modules can be user defined and plugged in. The various architectural components and
data flow between them are succinctly described in figure 1.

The primary architectural feature of the side channel profiler is that it provides a
plug in point for new analysis modules. Before execution of each instruction, the analysis
module is passed the state of the processor and records any relevant information. This
allows experts to write new analysis modules to evaluate implementations against new
attacks. Furthermore, this allows users of the framework to select the type of leakage



COSADE 2010 - First International Workshop on Constructive Side-Channel Analysis and Secure Design

31

Figure 1: Architectural Components and Data Flow.

to evaluate their implementation for. This pluggable architecture allows the tool to
flexibly accommodate new types of attacks.

In our current implementation, we use the Microsoft Debugger API to trace the
processor state, as well as the state of the process memory. However in principle, any
tracing utility that support instruction- and register-level tracing, such as other debug-
gers, would work as well. The Microsoft Debugger API consists of the debugger engine,
that loads and controls execution of a debuggee process, as well as a set of functions that
allow a program to control a debuggee process via this engine. The side channel profiler
framework core allows debuggee execution to continue for the execution of one instruc-
tion, then transitions control to an analysis plugin. The analysis plugin obtains data
about the current processor state via the debugger API, and upon completion returns
control back to the core of the framework. This process repeats until the cryptographic
implementation completes execution.

2.2 Analysis Modules

Analysis modules are broadly defined as the pluggable component of the profiler used to
analyze the execution of a cryptographic implementation. This is necessarily so, as this
component needs to be defined abstractly enough so that if a new attack is discovered,
a new analysis module can be easily implemented to test for it. To accommodate
the flexible architectural nature of the analysis module, the interface is simple and
very flexible. There are three interface points to an analysis module: an initialization
function, an analysis function, and an uninitialize function. The initialization function
takes a single parameter, an output file for analysis data. The analysis function is passed
a reference to the debugger engine and obtains data on the state of the processor by
calling debugger API functions. The analysis function is invoked after each instruction
execution. Upon return from this function the side channel profiler core executes the
next instruction and then invokes the analysis function again. When the side channel
profiler completes execution it calls the uninitialize function. This function completes
any analysis and writes data to the output file.

There are two broadly defined categories of analysis modules, hardware simulation
modules and idealized model analysis modules.

2.2.1 Hardware Simulation

Analysis modules can perform analysis by simulating the behavior of actual hardware.
Modern processors are too complex to efficiently simulate in their entirety. However,
to avoid this problem the analysis module can be used to simulate one specific compo-
nent of hardware. For example, by observing the record of memory accesses, we can



COSADE 2010 - First International Workshop on Constructive Side-Channel Analysis and Secure Design

32

(a) Montgomery Multi-
plication

(b) Squaring (c) Full Exponentiation

Figure 2: Program counter offset traces.

simulate cache hits and misses as to evaluate leakage from this side channel. Similarly,
by recording the stream of instructions and branches, we can simulate the state of the
branch predictor and evaluate any side channel leakage from it. The side channel leakage
from these two specific examples is caused by nonconstant program flow and memory
accesses. However, with more sophisticated models of hardware we could simulate other
side channels like power usage.

2.2.2 Idealized Leakage Models

In addition to emulating hardware, an analysis model can skip this step and directly
analyze the program execution according to an idealized model. This is useful if the
underlying hardware is overly complicated or unknown. For example, the execution
of an algorithm can be analyzed for compliance with the program counter model [9].
This model asserts that the program counter should advance in the same manner while
executing a cryptographic algorithm, regardless of input. A similar model holds that
memory access should not be conditional on input. To evaluate an implementation
against these models, we can directly record the execution of the program across inputs.
These records can be compared and used to determine if program flow or memory access
is dependent upon secret data. Aside from these two examples, the architecture is
flexible enough to allow us to implement analysis modules for other idealized leakage
models as well.

3 Case Study: Näıve Square and Multiply

We ran the side channel profiler on a Näıve square and multiply modular exponenti-
ation routine. This is not a surprising example of side channel vulnerability, but it is
demonstrative of the capabilities of the profiler. To this end we implemented Näıve
square and multiply exponentiation, compiled with visual studio 2008 for x86 (32 bit)
architecture. We implemented a simple program to run a square and multiply modular
exponentiation routine. The analysis module that we used for this test case evaluates
the execution with the program counter model [9] and records the program counter as
it runs through the exponentiation computation.

Figure 2 shows the output of this side channel profiler after analyzing the execution
of exponentiation modulo a 64 bit prime with a 16 bit exponent. The profiler can handle
inputs of a more cryptographically interesting size, but the visualization is clearer at



COSADE 2010 - First International Workshop on Constructive Side-Channel Analysis and Secure Design

33

these lengths. Figures 2a and 2b shows the traces of the offset of the program counter
from the base address of the module (dll or executable.) The places where the trace
spikes down to −1 indicate places where program flow transferred out of the module
containing the crypto code. These portions of the record have been cut out solely for
visualization purposes. This is not problematic for analysis though, these calls outside
are to the Microsoft visual studio C run time library for memset and have constant
program flow. The program counter trace for the whole exponentiation is shown in figure
2c; the pattern of squares and multiplies is visible in the trace. The tool does not expose
any variation in program flow in the squaring or multiplying routines. By obtaining the
trace record, and performing pattern matching on the multiply and squaring routines,
we can automatically recover the exponent that was used. Although this example is
very simple, it is a very clear demonstration of the concept and most basic capabilities
of the side channel profiler.

4 Future Work

The previous section shows that side channel profiler is able to analyze cryptographic
implementations. However, it is a work in progress with much room for improvement
and future development. There is room for both improvement of the architecture and
implementation as well as a significant amount of work on building analysis modules.

4.1 Architectural and Implementation Improvements

The main architectural and implementation improvement for the side channel profiler
is a performance improvement. Although sufficient to perform analysis, the analysis for
large cryptographic sizes (in the thousands of bits) can take hours. To maximize the
efficiency of the test and development cycle this performance needs to be improved.

Presently, as the side channel profiler is implemented, the framework passes the
state to the analysis plugin at each instruction execution. It may be the case that
the analysis module does not actually need information from each instruction. In the
current design, if this is the case, the analysis module just returns control back to the
framework. However, the act of stepping through a process instruction by instruction
is not optimal. In so far as, transitioning control from the debugger engine to the
debuggee actually takes a significant amount of time, and may be unnecessary for all
analysis plugins.

To prevent the debugger engine from unnecessarily taking control of the target pro-
cess the analysis module needs a way to specify when it should be invoked by the side
channel profiler next. Specifically, the analysis module should optionally specify a filter
that the side channel profiler uses to determine the break points to transition control
from the target process. This way the debugger engine only halts the target process
when necessary.

4.2 Implement Advanced Hardware Analysis Modules

At this time, the side channel profiler does not include any specific hardware analysis
modules. While our framework makes this possible, it remains a difficult problem.
Indeed, to make an analysis module that models hardware, it would be necessary to
have access to the actual design of the hardware. In fact, modeling the entire processor
on this level may be infeasible. However, modeling the entire processor may not be
necessary, nor is modeling the entire processor on each instruction. Rather, it may be



COSADE 2010 - First International Workshop on Constructive Side-Channel Analysis and Secure Design

34

sufficient to model only particular processor components, such as the arithmetic logical
unit or the multiplier.

In the future, we would like to apply these ideas to write an analysis module to
perform power analysis. Specifically, with a model of the multiplier and its power
usage profile we can write an analysis module that ignores all other instructions besides
multiplies. On multiplies, this analysis module would simulate the operation of the
hardware and its power usage profile. Upon completion of the cryptographic operation
the record of multiplies and their power usage profile can be analyzed for leakage. Of
course, such a profile would not give us general assurance that our implementation does
not leak information through power usage channels. However, it could test for leakage
through power channels during multiplies. In further refinements of this module, we can
target power usage of the hardware components that are most likely to leak information
by this channel.

5 Conclusion

The side channel profiler is a software based solution to test cryptographic implementa-
tions for side channel leakage. We implemented the tool on the windows platform using
the Microsoft debugger API, but similar techniques can work with other tracing utili-
ties. We demonstrated a simple analysis of square and multiply modular exponentiation
in the program counter model using the tool. This simple example shows the basis for
how this tool can be extended to analyze more complex and realistic implementations
of cryptographic algorithms.

This tool, in and of itself, is not a general method to detect all types of side channel
leakage. The approach described here has only been shown detecting side channel leak-
age that is caused by data dependent variation in execution flow and memory accesses.
However, the architecture is pluggable and allows for adding new capabilities to test
for new types of threats. As such, it can be adapted to detect other types of leakage,
thus providing a software tool for a testing process to detect and eliminate more general
types of side channel leakage.

References

[1] O. Acıiçmez, Ç. K. Koç and J.P. Seifert. On the Power of Simple Branch Prediction
Analysis, Cryptology ePrint Archive, Report 2006/351, 2006.

[2] N. Ferguson and B. Schneier. Practical Cryptography, Wiley, (2003).

[3] J. den Hartog, J. Verschuren, E. de Vink, J. de Vos and W. Wiersma. PINPAS a
tool for power analysis of smartcards, Proceedings of SEC 2003, Wolters-Kluwer,
pp. 5 (2003).

[4] G. Hollestelle and W. Burgers and J.I. den Hartog. Power analysis on smartcard
algorithms using simulation, Technical Report Eindhoven University of Technology,
http://doc.utwente.nl/66569/, (2004).

[5] P. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and
Other Systems, Advances in cryptology-CRYPTO 1996, Springer Lect. Notes in
Comp. Sci. 1109, Springer-Verlag, pp. 104–113 (1996).



COSADE 2010 - First International Workshop on Constructive Side-Channel Analysis and Secure Design

35

[6] P. Kocher, J. Jaffe and B. Jun. Differential Power Analysis, Advances in
Cryptology-CRYPTO 1999, Springer Lect. Notes in Comp. Sci. 1666, Springer-
Verlag, pp. 388–397 (1999).

[7] P. Kocher, J. Jaffe and B. Jun. Introduction to Differen-
tial Power Analysis and Related Attacks, Technical Report,
http://www.cryptography.com/resources/whitepapers/DPATechInfo.pdf, 1998.

[8] S. Micali and L. Reyzin. Physically Observable Cryptography, TCC 2004, Springer
Lect. Notes in Comp. Sci. 2951, Springer-Verlag, pp. 278–296 (2004).

[9] D. Molnar, M. Piotrowski, D. Schultz and D. Wagner. The Program Counter Se-
curity Model: Automatic Detection and Removal of Control-Flow Side Channel
Attacks, Cryptology ePrint Archive, Report 2005/368, 2005.

[10] M. Naor and G. Segev. Public-Key Cryptosystems Resilient to Key Leakage, Ad-
vances in Cryptology-CRYPTO 2009, Springer Lect. Notes in Comp. Sci. 5677,
Springer-Verlag, pp. 18–35 (2009).

[11] C. Percival. Cache Missing for fun and profit,
http://www.daemonology.net/papers/cachemissing.pdf, (2005). Originally pre-
sented at BSDCan ’05, May 2005.


