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Abstract. The SSL/TLS protocol is the de-facto standard for secure
Internet communications, and supported by virtually all modern e-mail
clients and Web browsers. With more and more PDAs and cell phones
providing wireless e-mail and Web access, there is an increasing demand
for establishing secure SSL/TLS connections on devices that are rela-
tively constrained in terms of computational resources. Therefore, the
efficient implementation of the cryptographic primitives executed on the
client side of the SSL/TLS protocol is essential for the emergence of a
wireless Internet with strong end-to-end security. In addition, the cryp-
tographic primitives need to be protected against side-channel analysis
since an attacker may be able to monitor, for example, electromagnetic
emanations from a mobile device. Using an RSA-based cipher suite has
the advantage that all modular exponentiations on the client side are
carried out with public exponents, which is uncritical in terms of per-
formance and side-channel leakage. However, the current migration to
AES-equivalent security levels makes a good case for using an Elliptic
Curve Cryptography (ECC)-based cipher suite. We demonstrate in this
paper that, for high security levels, ECC-based cipher suites outperform
their RSA counterparts on the client side, even though they require the
integration of diverse countermeasures against side-channel attacks. In
addition, we propose a new countermeasure to protect the symmetric
encryption of application messages (i.e. bulk data) against Differential
Power Analysis (DPA) attacks. This new countermeasure, which we call
inter-block shuffling, is based on an “interleaved” encryption of several
128-bit blocks of data (using, for example, the AES), and randomizes
the order in which the individual rounds of the individual blocks are
executed. Our experimental results show that inter-block shuffling is a
highly effective countermeasure as it provides excellent DPA-protection
at the expense of a slight degradation in performance.

Extended Abstract

In the past, research in network security was conducted under the assumption
that the endpoints of a communication channel are secure; an adversary could
only attack the communication itself. A typical attack in this scenario started
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with eavesdropping on network traffic, followed by the modification, injection,
or replay of messages with the goal to compromise the security of (parts of) the
network [9]. However, with the current paradigm shift to more and more cell
phones, PDAs, and other mobile or embedded devices being used to access the
Internet, this adversary model must be adapted to incorporate attacks on the
communication endpoints themselves too. For example, an adversary can try to
obtain the secret key(s) used to encrypt the communication by analyzing side-
channel information (e.g. power consumption or EM emanations) leaking from
a device [10,5]. An EM attack on a cell phone or PDA may even be conducted
without the owner of the device being able to notice it [13]. Therefore, secure
networking does not only require cleverly devised protocols, but also a secure
implementation of these protocols and the associated cryptographic algorithms
[11]. In particular, the cryptographic algorithms must be protected against all
possible forms of side-channel attack.

The “de-facto” standard for secure communication over an insecure, open
network like the Internet is the Secure Sockets Layer (SSL) protocol [4] and its
successor, the Transport Layer Security (TLS) protocol [3]. Both use a combi-
nation of public-key and secret-key cryptographic techniques to guarantee the
confidentiality, integrity, and authenticity of data transfer between two parties
(typically a client and a server). The SSL protocol is composed of two layers
and includes a number of sub-protocols [4]. At the lower level is the SSL Record
Protocol, which specifies the format of data transmission between client and
server, including encryption and integrity checking [4]. It encapsulates several
higher-level protocols, one of which is the SSL Handshake Protocol. The main
tasks of the handshake protocol are the negotiation of a set of cryptographic
algorithms, the authentication of the server (and, optionally, of the client1), as
well as the establishment of a pre-master secret via asymmetric (i.e. public-key)
techniques [4]. Both the client and the server derive a master secret from this
pre-master secret, which is then used by the record protocol to generate shared
keys for symmetric encryption and message authentication.

The SSL/TLS protocol is algorithm-independent (or algorithm-agile) in the
sense that it supports different algorithms for one and the same cryptographic
operation, and allows the communicating parties to make a choice among them
[4]. At the beginning of the handshake phase, the client and the server negotiate
a cipher suite, which is a well-defined set of algorithms for authentication, key
agreement, symmetric encryption, and integrity checking. Both SSL and TLS
specify the use of RSA or DSA for authentication, and RSA or Diffie-Hellman
for key establishment. In 2006, the TLS protocol was revised to support Elliptic
Curve Cryptography (ECC) [1,8], and since then, cipher suites using ECDH
for key exchange and ECDSA for authentication can be negotiated during the
handshake phase [2]. The results from [6] and [7] clearly show that SSL/TLS

1 Most Internet applications use SSL only for server-side authentication, which means
that the server is authenticated to the client, but not vice versa. Client authentication
is typically done at the application layer (and not the SSL layer), e.g. by entering a
password and sending it to the server over a secure SSL connection.



COSADE 2010 - First International Workshop on Constructive Side-Channel Analysis and Secure Design

53

Performance and Security Aspects of Client-Side SSL/TLS Processing 3

servers reach significantly better performance and throughput figures when the
handshakes are carried out with ECC instead of RSA. On the client side, how-
ever, the situation is not that clear since the cryptographic operations executed
during the handshake seem to favor RSA cipher suites over their ECC-based
counterparts. When using an RSA cipher suite, all modular exponentiations on
the client side are performed with public exponents, which are typically small
[4]. In the case of an ECC-based cipher suite, however, the client has to execute
two scalar multiplications for ephemeral ECDH key exchange, and at least one
double-scalar multiplication to validate the server’s certificate2, which is quite
costly. In addition, the scalar multiplications for ECDH key exchange need to
be protected against Simple Power Analysis (SPA) attacks, whereas RSA-based
key transport (or, more precisely, the encryption of a random number using the
public RSA key from the server’s certificate) is rather uncritical with respect to
side-channel leakage from the client.

It is widely presumed that, due to efficiency reasons, RSA cipher suites are
better suited for SSL/TLS handshake processing on resource-restricted clients
than ECC-based cipher suites. For example, Gupta et al. compared in [6] the
handshake time of OpenSSL 0.9.6b using a 1024-bit RSA cipher suite versus a
163-bit ECC cipher suite, and found the former outperforming the latter by 30%
when executed on a PDA operating as client. VeriSign, a major international
Certification Authority (CA), prefers RSA cipher suites over their ECC-based
counterparts for mobile clients since, as mentioned in [16], “very few platforms
have problems with RSA.” However, the ongoing migration to AES-equivalent
security levels (e.g. 256-bit ECC, 3072-bit RSA) makes a good case to reassess
the “ECC vs. RSA” question for client-side SSL processing. Surprisingly, the
relative performance of RSA and ECC-based cipher suites on the client side has
not yet been studied for security levels beyond 1024 and 163 bits, respectively
(at least we are not aware of such a study). With the present paper we intend
to fill this gap and demonstrate that a handshake with a cipher suite based on
256-bit ECC is only slightly slower than a handshake with 3072-bit RSA, while
ECC wins big over RSA at higher security levels. To support these claims, we
provide a detailed performance analysis of a “lightweight” SSL implementation
into which we integrated a public-key crypto library optimized for client-side
SSL processing on mobile devices. We also show that the protection of ECDH
key exchange against side-channel attacks has almost no impact on the overall
handshake time.

Besides ECDH key exchange, also the symmetric encryption of application
data (i.e. “bulk data”) using a block cipher such as the AES may leak sensitive
information through power or EM side channels, which can be exploited by an
adversary to mount a Differential Power Analysis (DPA) attack [10]. Numerous

2 Instead of sending a single certificate to the client, the server may also send a chain
of two or more certificates linking the server’s certificate to a trusted certification
authority (CA). However, throughout this paper we assume that the certificate chain
consists of just one certificate, and hence a single signature verification operation is
sufficient to check the validity of the certificate.
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countermeasures against DPA attacks on the AES have been proposed in the
past 10 years; from a high-level point of view they can be broadly categorized
into Hiding and Masking [12]. Typical examples of the hiding countermeasure
to protect a software implementation of the AES include the random insertion
of dummy instructions/operations/rounds and the shuffling of operations such
as S-box look-ups. The goal of hiding is to randomize the power consumption
by performing all leaking operations at different moments of time in each exe-
cution. Masking, on the other hand, conceals every key-dependent intermediate
result with a random value, the so-called mask, in order to break the correlation
between the “real” (i.e. unmasked) intermediate result and the power consump-
tion. However, masking in software is extremely costly in terms of execution
time, whereas hiding provides only a marginal protection against DPA attacks
[12]. Therefore, these countermeasures are not very well suited for an SSL/TLS
client since the amount of data to be encrypted can be fairly large, and hence
a significant performance degradation is less acceptable than, for example, for a
smart card application that encrypts just a few 128-bit blocks of data.

In order to solve this problem, we introduce Inter-Block Shuffling (IBS), a
new countermeasure to protect the AES (and other round-based block ciphers)
against DPA attacks. IBS belongs to the category of “hiding” countermeasures
and encrypts/decrypts several 128-bit blocks of data in a randomly interleaved
fashion. It can be applied whenever large amounts of data are to be encrypted
or decrypted, which is often the case when transmitting emails or HTML files
over an SSL connection. The SSL record protocol specifies a payload of up to
214 bytes, which corresponds to 1024 blocks of 128 bits [4]. A straightforward
encryption of this payload starts with the first block, then continues with the
second block, and so on, until the last block has been processed. However, when
using IBS, the individual rounds of the blocks are executed “interleaved” and
in random order. More precisely, the encryption starts with the first round of a
randomly chosen block, followed by the first round of another randomly chosen
block, and so on, until the first round of each block has been performed. Then the
encryption of the up to 1024 blocks continues with the second round (again the
blocks are processed in random order), followed by the remaining rounds until
all rounds of all 1024 blocks have been executed. Of course, IBS can only be
used with a non-feedback mode of operation such as the Counter Mode or the
Galois/Counter Mode [14,15]. Contrary to IBS, the shuffling countermeasures
sketched in the previous paragraph randomize the sequence of operations within
one block, hence they can be referred to as “intra-block shuffling.” Our experi-
mental results show that IBS is significantly more effective than other software
countermeasures (in particular intra-block shuffling) as it achieves a high degree
of DPA-resistance at the expense of a small performance degradation.
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